Purple Loosestrife

What You Should Know, What You Can Do

THE AMBUSH
Purple loosestrife’s yellowish flowers, a beautiful but deceiving sign of the presence of this species. In the early 1990s, plants were brought to North America from Europe to enhance wetland habitats, and since then have been spreading through the wetlands of Canada and the United States. Purple loosestrife can easily spread even a short distance from its source. It is not easy to spot due to its slender lower stalk, narrow leaves, and tiny pink flowers in tight clusters. However, it is important to know that loosestrife has spread widely and can be found across much of Canada and the United States.

THE CHALLENGE
Purple loosestrife is an invasive species which can rapidly degrade wetlands, diminishing their value for wildlife habitat. Thousands of acres of wetlands have been lost to purple loosestrife, flushing away the value of hundreds of species of plants, birds, mammals, fish, and other animals and the scenery and economy and impact of millions of dollars. Purple loosestrife also invades other vital habitats, such as the plant in the prairie, on the farm, in the forest, and in the garden.

THE PROGRAM
Individuals, resource managers and community groups can be a major force in the management and control of purple loosestrife. Information in this brochure will help you identify the species and know what to do.

THE SOLUTION
The Ontario Federation of Anglers and Hunters, the Canadian Nursery Trades Association, the Ontario Ministry of Natural Resources, the U.S. Great Lakes Sea Grant Network, the Manitoba Purple Loosestrife Project, the Canadian Wildlife Service, and others have joined forces to combat this rapid invasive plant.

GUIDELINES FOR PURPLE LOOSESTRIFE CONTROL

Before control activities begin, fill in the following diagram to help you identify the type of plants in your area and determine the best control method.

Flowers: Individual flowers have five purple petals. Flowers occur in clusters of ten to thirty flowers per stem. Each flower is about 15 mm (0.6 inches) wide.

Seed Capsule: The short, sharp capsule is about 15 mm (0.6 inches) wide. Seeds are embedded in a cup-like structure. The structure can easily be rubbed to expose the seeds.

Leaf: Leaves alternate with small stems at the base of the plant. The leaves can change from broad to narrow as they lower down the stem. Each leaf is up to 2 cm (0.8 inches) wide, and 5 cm (2 inches) long.

Stem: Stems are square, 2-3 m (6-10 feet) tall or more. Stems are woody or green at the base, becoming stem and base at the ground. Stems can be up to 2 cm (0.8 inches) thick, and have many tendrils.

Tender Stalk: The plant begins to drop off, capsules and seeds are easily removed at this stage of growth.

Tender Shoot: The plant begins to seed, and seeds can be easily removed at this stage of growth.

In the U.S. a permit is required; call a state natural resource agency for more information.

In Canada, a permit is required; call a federal natural resource agency for more information.

HOW TO CONTROL PURPLE LOOSESTRIFE

Cutting the spread of purple loosestrife is necessary to protect wetland, wild, and native plant habitat. Purple loosestrife is easily spread, and control operations that do not entirely stop the spread of the species can result in future problems. It is important to control the spread of purple loosestrife before it becomes an established colony.

Estimate the size and density of the infestation, and use the following chart to choose one or more appropriate biological, mechanical, or chemical control methods.

In areas too heavily infested to cut or dig plants, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area. Where chemical techniques are not feasible, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area. Where chemical techniques are not feasible, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area. Where chemical techniques are not feasible, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area.

Biological Control

In animals, purple loosestrife releases its seeds before they are mature. Insects that eat purple loosestrife seeds can be introduced to control the spread of the species. Insects that eat purple loosestrife seeds can be introduced to control the spread of the species.

Chemical Control

In areas too heavily infested to cut or dig plants, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area. Where chemical techniques are not feasible, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area.

Herbicide Application

In areas too heavily infested to cut or dig plants, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area. Where chemical techniques are not feasible, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area.

Herbicide Application

In areas too heavily infested to cut or dig plants, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area. Where chemical techniques are not feasible, chemical techniques can still be used to control plants that may spread as a result of seeds escaping the area.
Mammals, amphibians, and fish which depend on native wetlands provide habitat for many native songbirds, waterfowl, and other wildlife. Be sure to wash off your clothes and equipment before leaving the site. Transport the small seeds to new areas. Thoroughly brush woody stem and roots to dispose of plant material. Wetlands may take a long time to decompose. If loosestrife seeds may not be destroyed and the thick, fibrous nature of the plant can prevent new growth. When a plant from one continent is introduced to another, it may become established in the new environment and become a weed. If it is not kept under control, it can displace native plants. selection and screening protocols Once testing is complete, a report is written for each biological control agent recommended for release to the regulatory authorities in Canada or the U.S. (or both). The report is based on the results of the testing. It includes all necessary information to meet the requirements of testing for North American quarantine pests.

When a new control method is developed, it usually becomes the natural enemy that can be used to control an invasive weed. Testing usually requires a minimum of 2-3 years of testing. Biological control testing is conducted on the site, using the highest and largest plants that grow under natural conditions. After the insect populations become established before the screening period, it will be possible to test the effects of the pest on the plant.

Before releasing a biological control agent, it is important to conduct a thorough risk assessment. This includes an evaluation of the potential benefits and risks of releasing the agent. If the benefits outweigh the risks, then the agent may be released. If the risks outweigh the benefits, then the agent may not be released. The release of biological control agents is a complex process that requires careful planning and monitoring. It is important to consider the potential impacts of releasing an agent on the environment and human health. Biological control agents can be beneficial to the natural environment, but they can also be harmful. It is important to carefully consider the potential risks before releasing any agents.